Generating texts in scientific papers requires not only capturing the content contained within the given input but also frequently acquiring the external information called \textit{context}. We push forward the scientific text generation by proposing a new task, namely \textbf{context-aware text generation} in the scientific domain, aiming at exploiting the contributions of context in generated texts. To this end, we present a novel challenging large-scale \textbf{Sci}entific Paper Dataset for Conte\textbf{X}t-Aware Text \textbf{Gen}eration (SciXGen), consisting of well-annotated 205,304 papers with full references to widely-used objects (e.g., tables, figures, algorithms) in a paper. We comprehensively benchmark, using state-of-the-arts, the efficacy of our newly constructed SciXGen dataset in generating description and paragraph. Our dataset and benchmarks will be made publicly available to hopefully facilitate the scientific text generation research.


翻译:在科学文件中生成文本不仅需要捕捉特定投入中的内容,而且需要经常获取称为\ textit{context}的外部信息。我们通过在科学领域提出一项新的任务,即\ textbf{context-aware 文本生成}来推动科学文本的生成,目的是利用生成文本中背景贡献。为此,我们提出了一个具有挑战性的新型大型大型 \ textbf{X}t-Aware Text 文本{textbf{Gen}eration (SciXGen) 数据集,由205,304篇论文组成,其中充分提到广泛使用的对象(例如表格、数字、算法),我们用最新资料全面衡量我们新建的SciXGen数据集在生成描述和段落方面的效率。我们的数据集和基准将公开,希望为科学文本生成研究提供便利。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
7+阅读 · 2018年4月21日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员