Named entity recognition (NER) is a task of extracting named entities of specific types from text. Current NER models often rely on human-annotated datasets requiring the vast engagement of professional knowledge on the target domain and entities. This work introduces an ask-to-generate approach, which automatically generates NER datasets by asking simple natural language questions that reflect the needs for entity types (e.g., Which disease?) to an open-domain question answering system. Without using any in-domain resources (i.e., training sentences, labels, or in-domain dictionaries), our models solely trained on our generated datasets largely outperform previous weakly supervised models on six NER benchmarks across four different domains. Surprisingly, on NCBI-disease, our model achieves 75.5 F1 score and even outperforms the previous best weakly supervised model by 4.1 F1 score, which utilizes a rich in-domain dictionary provided by domain experts. Formulating the needs of NER with natural language also allows us to build NER models for fine-grained entity types such as Award, where our model even outperforms fully supervised models. On three few-shot NER benchmarks, our model achieves new state-of-the-art performance.


翻译:命名实体识别(NER)是一项从文本中提取特定类型名称实体的任务。当前的 NER 模型往往依赖需要广泛参与目标领域和实体方面专业知识的人类附加说明的数据集。这项工作引入了一种问与源的方法,通过询问简单的自然语言问题自动生成NER数据集,反映实体类型(例如,哪种疾病?)的需求,将其变为开放域问题解答系统。不使用任何内部资源(例如,培训句号、标签或内部字典),我们仅对生成的数据集进行专门培训的模型基本上超过了先前在四个不同领域六种受监管的模型。令人惊讶的是,在NCABI问题方面,我们的模型达到了75.5 F1分,甚至超过了以前最薄弱的监管模式,即4.1 F1分,这使用了由域专家提供的丰富的内部词典。用自然语言描述NER的需求,也使我们能够为精准的少数实体类型模型建立NER模型,在三个不同领域建立了完全监督的模型。

0
下载
关闭预览

相关内容

【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
23+阅读 · 2020年4月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2021年6月3日
Arxiv
5+阅读 · 2019年11月22日
Multi-Grained Named Entity Recognition
Arxiv
6+阅读 · 2019年6月20日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
4+阅读 · 2018年11月7日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员