Retrieval-augmented generation models have shown state-of-the-art performance across many knowledge-intensive NLP tasks such as open question answering and fact verification. These models are trained to generate the final output given the retrieved passages, which can be irrelevant to the original query, leading to learning spurious cues or answer memorization. This work introduces a method to incorporate evidentiality of passages -- whether a passage contains correct evidence to support the output -- into training the generator. We introduce a multi-task learning framework to jointly generate the final output and predict the evidentiality of each passage, leveraging a new task-agnostic method to obtain {\it silver} evidentiality labels for supervision. Our experiments on five datasets across three knowledge-intensive tasks show that our new evidentiality-guided generator significantly outperforms its direct counterpart with the same-size model and advances the state of the art on FaVIQ-Ambig. We attribute these improvements to both the auxiliary multi-task learning and silver evidentiality mining techniques.


翻译:重新获取强化的生成模型显示,许多知识密集型NLP任务(如开放式答题和事实核实)的先进性能,如开放式答题和事实核实。这些模型经过培训,可以产生最终产出,因为检索到的段落与原始查询无关,导致学习虚假的提示或回答记忆化。这项工作引入了一种方法,将通道的证据性 -- -- 某一段是否包含支持输出的正确证据 -- -- 纳入到生成器的培训中。我们引入了一个多任务学习框架,以联合生成最终输出并预测每一通道的可见性,利用新的任务认知方法获取银银色证据标签以进行监督。我们在五个数据集上进行的实验显示,我们新的证据制导生成器大大超越了与相同大小模型的直接对应功能,并推进了FaVIQ-Ambigi的艺术状态。我们将这些改进归功于辅助性多任务学习和银色证据挖掘技术。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
NLP - 基于 BERT 的中文命名实体识别(NER)
AINLP
466+阅读 · 2019年2月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
18+阅读 · 2020年10月9日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
NLP - 基于 BERT 的中文命名实体识别(NER)
AINLP
466+阅读 · 2019年2月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员