Several recently published papers in Decision Support Systems discussed issues related to data quality in Information Systems research. In this short research note, I build on the work introduced in these papers and document two data quality issues discovered in a large open dataset commonly used in research. Inside Airbnb (IA) collects data from places and reviews as posted by users of Airbnb.com. Visitors can effortlessly download data collected by IA for several locations around the globe. While the dataset is widely used in academic research, no thorough investigation of the dataset and its validity has been conducted. This note examines the dataset and explains an issue of incorrect data added to the dataset. Findings suggest that this issue can be attributed to systemic errors in the data collection process. The results suggest that the use of unverified open datasets can be problematic, although the discoveries presented in this work may not be significant enough to challenge all published research that used the IA dataset. Additionally, findings indicate that the incorrect data happens because of a new feature implemented by Airbnb. Thus, unless changes are made, it is likely that the consequences of this issue will only become more severe. Finally, this note explores why reproducibility is a problem when two different releases of the dataset are compared.
翻译:在决策支持系统中最近发表的几份论文讨论了与信息系统研究数据质量有关的问题。在这份简短的研究说明中,我以这些文件中介绍的工作为基础,并记录了在研究中常用的大型开放数据集中发现的两个数据质量问题。Airbnb(IA)内部从Airbnb.com用户张贴的地方和审查处收集数据。访问者可以不遗余力地下载IA为全球若干地点收集的数据。虽然该数据集在学术研究中广泛使用,但没有对数据集及其有效性进行彻底调查。本说明审查了数据集,并解释了数据集中添加的不正确数据的问题。调查结果表明,这一问题可归因于数据收集过程中的系统性错误。结果显示,使用未经核实的开放数据集可能存在问题,尽管这项工作的发现可能不足以对使用IA数据集的所有已公布的研究提出质疑。此外,调查结果表明,由于Airbnb执行的一个新特征,数据会发生不正确数据。因此,除非作出修改,否则这个问题的后果可能只是因为数据收集过程出现更严重的问题。最后,这项说明是,在比较数据的不同情况下,这个问题的后果会变成更严重的问题。