There is a rumbling debate over the impact of gentrification: presumed gentrifiers have been the target of protests and attacks in some cities, while they have been welcome as generators of new jobs and taxes in others. Census data fails to measure neighborhood change in real-time since it is usually updated every ten years. This work shows that Airbnb data can be used to quantify and track neighborhood changes. Specifically, we consider both structured data (e.g. number of listings, number of reviews, listing information) and unstructured data (e.g. user-generated reviews processed with natural language processing and machine learning algorithms) for three major cities, New York City (US), Los Angeles (US), and Greater London (UK). We find that Airbnb data (especially its unstructured part) appears to nowcast neighborhood gentrification, measured as changes in housing affordability and demographics. Overall, our results suggest that user-generated data from online platforms can be used to create socioeconomic indices to complement traditional measures that are less granular, not in real-time, and more costly to obtain.


翻译:有关光化影响的辩论激烈:在有些城市,假定的光质体是抗议和袭击的目标,而另一些城市则欢迎他们成为新的工作和税收的创造者。人口普查数据无法衡量社区实时变化,因为通常每10年更新一次。这项工作表明Airbnb数据可以用来量化和跟踪社区变化。具体地说,我们认为结构化数据(例如,列表数量、审查数量、列表信息)和非结构化数据(例如,通过自然语言处理和机器学习算法处理的用户生成的审查)和三大城市(纽约市(美国)、洛杉矶(美国)和大伦敦(英国))的非结构化数据(例如,通过自然语言处理和机器学习算法处理的用户生成审查)。我们发现,Airbnb数据(特别是其无结构的部分)似乎现在以住房可负担性和人口统计变化来衡量的光质化。总体而言,我们的结果表明,用户生成的在线平台数据可以被用来创建社会经济指数,以补充不太简单、不实时、更昂贵的传统计量方法。

0
下载
关闭预览

相关内容

Airbnb zh.airbnb.com/? 成立于 2008 年 8 月,总部位于加利福尼亚州旧金山市。Airbnb 是一个值得信赖的社区型市场,在这里人们可以通过网站、手机或平板电脑发布、发掘和预订世界各地的独特房源。无论是想在公寓里住一个晚上,或在城堡里呆一个星期,又或在别墅住上一个月,都能以任何价位享受到 Airbnb 在全球 191 个国家的 34,000 多个城市为你带来的独一无二的住宿体验。

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
COVID-19文献知识图谱构建,UIUC-哥伦比亚大学
专知会员服务
41+阅读 · 2020年7月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
已删除
将门创投
5+阅读 · 2018年6月7日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
13+阅读 · 2019年1月26日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
COVID-19文献知识图谱构建,UIUC-哥伦比亚大学
专知会员服务
41+阅读 · 2020年7月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
已删除
将门创投
5+阅读 · 2018年6月7日
Top
微信扫码咨询专知VIP会员