The performance of database systems is usually characterised by their average-case (i.e., throughput) behaviour in standardised or de-facto standard benchmarks like TPC-X or YCSB. While tails of the latency (i.e., response time) distribution receive considerably less attention, they have been identified as a threat to the overall system performance: In large-scale systems, even a fraction of requests delayed can build up into delays perceivable by end users. To eradicate large tail latencies from database systems, the ability to faithfully record them, and likewise pinpoint them to the root causes, is imminently required. In this paper, we address the challenge of measuring tail latencies using standard benchmarks, and identify subtle perils and pitfalls. In particular, we demonstrate how Java-based benchmarking approaches can substantially distort tail latency observations, and discuss how the discovery of such problems is inhibited by the common focus on throughput performance. We make a case for purposefully re-designing database benchmarking harnesses based on these observations to arrive at faithful characterisations of database performance from multiple important angles.


翻译:数据库系统的性能通常以其平均情况(即吞吐量)在标准标准基准(如TPC-X或YCSB)中以标准化或反facto标准基准(如TPC-X或YCSB)为特征。虽然悬浮分布的尾部(即反应时间)得到的关注要少得多,但被确定为对整个系统性能的威胁:在大型系统中,即使是一小部分被延误的请求也会累积成最终用户可以察觉的延误。为了消除数据库系统中的大型尾部延时,迫切需要具备忠实记录它们并同样将其确定为根本原因的能力。在本文件中,我们处理使用标准基准衡量尾部延时的挑战,并找出微妙的危险和陷阱。特别是,我们展示以爪哇为基础的基准方法如何严重扭曲尾部延时观察,并讨论这些问题的发现如何因共同注重吞吐量性能而受阻。我们有理由根据这些观察,特意重新指定数据库基准,以便从多个重要角度得出数据库性能的准确性能。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
5+阅读 · 2020年6月16日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
Arxiv
8+阅读 · 2018年11月21日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员