The transition to green energy grids depends on detailed wind and solar forecasts to optimize the siting and scheduling of renewable energy generation. Operational forecasts from numerical weather prediction models, however, only have a spatial resolution of 10 to 20-km, which leads to sub-optimal usage and development of renewable energy farms. Weather scientists have been developing super-resolution methods to increase the resolution, but often rely on simple interpolation techniques or computationally expensive differential equation-based models. Recently, machine learning-based models, specifically the physics-informed resolution-enhancing generative adversarial network (PhIREGAN), have outperformed traditional downscaling methods. We provide a thorough and extensible benchmark of leading deep learning-based super-resolution techniques, including the enhanced super-resolution generative adversarial network (ESRGAN) and an enhanced deep super-resolution (EDSR) network, on wind and solar data. We accompany the benchmark with a novel public, processed, and machine learning-ready dataset for benchmarking super-resolution methods on wind and solar data.
翻译:向绿色能源网的过渡取决于详细的风能和太阳能预测,以优化可再生能源发电的选址和时间安排。但是,从数字天气预测模型得出的业务预测只有10至20公里的空间分辨率,从而导致可再生能源农场的次最佳使用和发展。天气科学家一直在开发超分辨率方法,以提高分辨率,但往往依赖简单的内插技术或计算昂贵的差别方程模型。最近,基于机器的学习模型,特别是物理学知情的增强基因对抗网络(PhiRIGAN),已经超过传统的降尺度方法。我们为领先的基于深层次学习的超分辨率技术提供了彻底和可扩展的基准,包括强化的超分辨率对抗网络(ESRGAN)和强化的深超分辨率网络(EDSR),以风和太阳数据为基础。我们伴随这一基准,我们推出了一个新的公众、经过处理和机学准备数据集,以对风和太阳数据的超分辨率进行基准化。