For integers $n>2$ and $k>0$, an $(n\times n)/k$ semi-Latin square is an $n\times n$ array of $k$-subsets (called blocks) of an $nk$-set (of treatments), such that each treatment occurs once in each row and once in each column of the array. A semi-Latin square is uniform if every pair of blocks, not in the same row or column, intersect in the same positive number of treatments. We show that when a uniform $(n\times n)/k$ semi-Latin square exists, the Schur optimal $(n\times n)/k$ semi-Latin squares are precisely the uniform ones. We then compare uniform semi-Latin squares using the criterion of pairwise-variance (PV) aberration, introduced by J.P. Morgan for affine resolvable designs, and determine the uniform $(n\times n)/k$ semi-Latin squares with minimum PV aberration when there exist $n-1$ mutually orthogonal Latin squares (MOLS) of order $n$. These do not exist when $n=6$, and the smallest uniform semi-Latin squares in this case have size $(6\times 6)/10$. We present a complete classification of the uniform $(6\times 6)/10$ semi-Latin squares, and display the one with least PV aberration. We give a construction producing a uniform $((n+1)\times (n+1))/((n-2)n)$ semi-Latin square when there exist $n-1$ MOLS of order $n$, and determine the PV aberration of such a uniform semi-Latin square. Finally, we describe how certain affine resolvable designs and balanced incomplete-block designs (BIBDs) can be constructed from uniform semi-Latin squares. From the uniform $(6\times 6)/10$ semi-Latin squares we classified, we obtain (up to block design isomorphism) exactly 16875 affine resolvable designs for 72 treatments in 36 blocks of size 12 and 8615 BIBDs for 36 treatments in 84 blocks of size 6. In particular, this shows that there are at least 16875 pairwise non-isomorphic orthogonal arrays $\mathrm{OA}(72,6,6,2)$.
翻译:对于整数 $ > 2 美元 和 $0 美元, 半拉丁平方 美元是一个 $\ time 美元, 半拉丁平方 是一个 $n\ time 美元 untime, 以美元为单位为单位, 这样, 每行处理一次, 每行一次, 每列一次。 半拉丁方是统一的, 如果每对块, 而不是同一行或列, 都能在相同数量的正数中交叉。 我们显示, 当一个统一的 美元 (n\time n) / k美元 半拉丁方 平方平方 是一个 美元, 平面的平面 (n\ timen) 美元, 平面的平面的平面 美元 表示 86 平面的平面 美元 。 当有 美元时, 我们的平面 平面 平面的平面和 平面的平面 数字 。