We study the capabilities of probabilistic finite-state machines that act as verifiers for certificates of language membership for input strings, in the regime where the verifiers are restricted to toss some fixed nonzero number of coins regardless of the input size. Say and Yakary{\i}lmaz showed that the class of languages that could be verified by these machines within an error bound strictly less than $1/2$ is precisely NL, but their construction yields verifiers with error bounds that are very close to $1/2$ for most languages in that class when the definition of "error" is strengthened to include looping forever without giving a response. We characterize a subset of NL for which verification with arbitrarily low error is possible by these extremely weak machines. It turns out that, for any $\varepsilon>0$, one can construct a constant-coin, constant-space verifier operating within error $\varepsilon$ for every language that is recognizable by a linear-time multi-head nondeterministic finite automaton (2nfa($k$)). We discuss why it is difficult to generalize this method to all of NL, and give a reasonably tight way to relate the power of linear-time 2nfa($k$)'s to simultaneous time-space complexity classes defined in terms of Turing machines.
翻译:我们研究的是作为输入字符串语言成员证书核查员的概率性限定国家机器的能力,这些机器在制度内,核查员仅限于抛出某些固定的非零数硬币,而不管输入大小。 Say 和 Yakary ~i}lmaz 显示,在严格低于1/2美元的错误范围内,可以由这些机器核查的一类语言在严格意义上低于1/2美元的错误范围内是NL,但是,当“error”的定义得到加强,将永久循环包括在内,而不给予答复时,这些“error”的定义会给该类中大多数语言带来非常接近1/2美元的错误界限的核查员。我们把这些极弱机器可以任意低误判的NL的一组NL。结果显示,对于任何在错误范围内运行的$\varepsilon=0美元的任何一类语言,都可以为每个语言在线性多时(多头不确定性限制自动标定的自动标度(2nfa(k)美元)定义的固定空间校准值。我们讨论的是,为什么它很难将这个精度精度的精度的精度的精度的精度的精度的精度用于整个轨道的精度的精度与NL2级的精度的精度的精度的精度的精度的精度的精度的精度联系起来的精度联系起来的精度联系起来。