Sepsis poses a major global health threat, accounting for millions of deaths annually and significant economic costs. Accurately predicting the risk of mortality in sepsis patients enables early identification, promotes the efficient allocation of medical resources, and facilitates timely interventions, thereby improving patient outcomes. Current methods typically utilize only one type of data--either constant, temporal, or ICD codes. This study introduces a novel approach, the Time-Constant Kolmogorov-Arnold Network (TCKAN), which uniquely integrates temporal data, constant data, and ICD codes within a single predictive model. Unlike existing methods that typically rely on one type of data, TCKAN leverages a multi-modal data integration strategy, resulting in superior predictive accuracy and robustness in identifying high-risk sepsis patients. Validated against the MIMIC-III and MIMIC-IV datasets, TCKAN surpasses existing machine learning and deep learning methods in accuracy, sensitivity, and specificity. Notably, TCKAN achieved AUCs of 87.76% and 88.07%, demonstrating superior capability in identifying high-risk patients. Additionally, TCKAN effectively combats the prevalent issue of data imbalance in clinical settings, improving the detection of patients at elevated risk of mortality and facilitating timely interventions. These results confirm the model's effectiveness and its potential to transform patient management and treatment optimization in clinical practice. Although the TCKAN model has already incorporated temporal, constant, and ICD code data, future research could include more diverse medical data types, such as imaging and laboratory test results, to achieve a more comprehensive data integration and further improve predictive accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员