On sparse graphs, Roditty and Williams [2013] proved that no $O(n^{2-\varepsilon})$-time algorithm achieves an approximation factor smaller than $\frac{3}{2}$ for the diameter problem unless SETH fails. In this article, we solve a longstanding question: can we use the structural properties of median graphs to break this global quadratic barrier? We propose the first combinatiorial algorithm computing exactly all eccentricities of a median graph in truly subquadratic time. Median graphs constitute the family of graphs which is the most studied in metric graph theory because their structure represent many other discrete and geometric concepts, such as CAT(0) cube complexes. Our result generalizes a recent one, stating that there is a linear-time algorithm for all eccentricities in median graphs with bounded dimension $d$, i.e. the dimension of the largest induced hypercube. This prerequisite on $d$ is not necessarily anymore to determine all eccentricities in subquadratic time. The execution time of our algorithm is $O(n^{1.6456}\log^{O(1)} n)$. We provide also some satellite outcomes related to this general result. In particular, restricted to simplex graphs, this algorithm enumerate all eccentricities with a quasilinear running time. Moreover, an algorithm is proposed to compute exactly all reach centralities in time $O(2^{3d}n\log^{O(1)}n)$.


翻译:在稀疏的图表中, Roditty 和 Williams [2013] 证明没有美元(n ⁇ 2- varepsilon) 和美元时间算法能达到一个小于美元(frac{3 ⁇ 2}) 的直径问题近似系数,除非 SETH 失败。 在本篇文章中,我们解决了一个长期的问题: 我们能否使用中位图的结构属性来打破这个全球四边屏障? 我们建议第一个复式算法, 精确计算真正次赤道时间中位图的所有偏心。 中位图构成图表的组群, 这是在矩阵理论中研究最多的, 因为它们的结构代表了许多其他离散和几何概念, 如 CAT(0) 立方块复杂。 我们的结果概括了最近的一个问题, 表明在中位图中位维度中的所有偏心都存在线性的线性算法, 也就是说, 最大引导超立超立方体的维度的维度。 $d$( d$) 的这个先决条件不一定再确定下方时段时间的所有偏心。

0
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月12日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月29日
Edge-Vertex Dominating Set in Unit Disk Graphs
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月26日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员