Researchers are solving the challenges of spatial-temporal prediction by combining Federated Learning (FL) and graph models with respect to the constrain of privacy and security. However, there are still several issues left unattended: 1) Clients might not be able to access the server during inference phase; 2) The graph of clients designed manually in the server model may not reveal the proper relationship between clients. This paper proposes a new embeddings aggregation structured FL approach named node Masking and Multi-granularity Message passing-based Federated Graph Model (M3FGM) for the above issues. The server model of M3FGM employs a MaskNode layer to simulate the case of offline clients. We also redesign the decoder of the client model using a dual-sub-decoders structure so that each client model can use its local data to predict independently when offline. As for the second issue, A new GNN layer named Multi-Granularity Message Passing (MGMP) allows each client node to perceive global and local information.We conducted extensive experiments in two different scenarios on two real traffic datasets. Results show that the proposed model outperforms the baselines and variant models, achieves the best results in both scenarios.
翻译:研究人员正在通过结合Federed Learning(FL)和图形模型,解决空间时空预测的挑战,从而解决隐私和安全限制方面的空间-时空预测的挑战。然而,仍有若干问题没有解决:(1) 客户在推断阶段可能无法访问服务器;(2) 服务器模型中人工设计的客户图可能无法显示客户之间的适当关系。本文件建议针对上述问题采用一个新的嵌入组合结构FL方法,名为“节点遮罩”和“多色谱信息传递”的基于上述问题的FL结构式FL(M3FGM)模型。M3FGM服务器模型使用遮罩层模拟离线客户案例。我们还利用双子解码结构重新设计客户模型的解码器,以便每个客户模型能够使用其本地数据在离线时独立预测客户之间的适当关系。关于第二个问题,一个新的GNNP层名为“多色素信息传递”(MGMP)允许每个客户对全球和地方信息进行感知。我们在两种不同情景下进行了广泛的实验,在两个真实流量数据模型中都实现了基准,结果显示模型的变式。