We propose an algorithm to estimate the path-gradient of both the reverse and forward Kullback-Leibler divergence for an arbitrary manifestly invertible normalizing flow. The resulting path-gradient estimators are straightforward to implement, have lower variance, and lead not only to faster convergence of training but also to better overall approximation results compared to standard total gradient estimators. We also demonstrate that path-gradient training is less susceptible to mode-collapse. In light of our results, we expect that path-gradient estimators will become the new standard method to train normalizing flows for variational inference.
翻译:我们建议一种算法来估计逆向和前向的库尔回背- 利伯尔偏差的路径梯度,以得出任意的明显不可逆的正常流。 由此得出的路径梯度测算器可以直截了当地执行,可以降低差异,不仅导致培训的更快趋同,而且比标准的梯度测算器总体近似结果更好。 我们还表明,路径梯度测算器不易发生模式折叠。 根据我们的结果,我们期望路径梯度测算器将成为新的标准方法,为变异推算进行正常流动培训。