项目名称: 囚禁离子的纠缠和简单量子算法的实验实现

项目编号: No.11274352

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 冯芒

作者单位: 中国科学院武汉物理与数学研究所

项目金额: 93万元

中文摘要: 人工束缚条件下对量子态的有效操控是人们探索微观世界基本规律的有效途径。离子阱是这方面最有希望的候选装置之一。申请人的团队已经实现了八个离子呈线型晶体的囚禁。基于此,申请人拟通过本项目探索实验实现线型离子阱中多个离子的边带冷却、量子纠缠态的生成和探测以及简单量子算法等。主要内容包括:利用边带冷却,在线型离子阱中冷却一串离子到量子振动态的基态(包括一维冷却和三维冷却);对每个离子进行个别寻址,对离子串整体的量子态进行精确操控和测量;通过逻辑操作,实现两到三个离子的纠缠;实验实施简单的量子算法和检验量子力学的基本问题。本项目是离子阱量子信息处理的初期工作,将帮助我们掌握量子态制备、操控和探测的核心技术,提升我国量子信息研究的实验水平,为实现大规模的超冷离子量子信息处理打下良好基础。

中文关键词: 离子阱;边带冷却;纠缠;量子态;量子信息

英文摘要: The ion trap is one of the most promising setups to explore the microscopic world under artificial confinement condition by quantum state engineering. Eight ions have been confined as linear crystals in the ion trap of applicant's team. Based on this achievement, the applicant aims in this project to experimentally explore the sideband cooling, the entanglement generation and detection as well as simple quantum algorithms using trapped ions. The main jobs include: Cooling the trapped ions by sideband cooling to the vibrational ground state in one dimension and in three dimentions; Irradiating the ions individually or globally for precise control and detection; Using gate operations to achieve entanglement of two or three ions; Studying simple quantum algorithms and fundamental quantum problems. The project is a preliminary work for quantum information processing in ion trap, which could help us own the core techniques of quantum-state preparation, control and detection, and improve our experimental techniques in quantum information science. The success of the project will pave an avenue towards large-scale quantum information processing in China.

英文关键词: ion trap;sideband cooling;entanglement;quantum state;quantum information

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 Spotlight | 针对有缺失坐标的聚类问题的核心集
专知会员服务
14+阅读 · 2021年11月27日
【WSDM2022】基于约束聚类学习离散表示的高效密集检索
专知会员服务
26+阅读 · 2021年11月16日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
6+阅读 · 2021年9月20日
专知会员服务
211+阅读 · 2021年8月2日
【经典书】机器学习统计学,476页pdf
专知会员服务
120+阅读 · 2021年7月19日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
49+阅读 · 2020年8月27日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
126+阅读 · 2020年9月6日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
15+阅读 · 2018年4月3日
小贴士
相关主题
相关VIP内容
NeurIPS 2021 Spotlight | 针对有缺失坐标的聚类问题的核心集
专知会员服务
14+阅读 · 2021年11月27日
【WSDM2022】基于约束聚类学习离散表示的高效密集检索
专知会员服务
26+阅读 · 2021年11月16日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
6+阅读 · 2021年9月20日
专知会员服务
211+阅读 · 2021年8月2日
【经典书】机器学习统计学,476页pdf
专知会员服务
120+阅读 · 2021年7月19日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
49+阅读 · 2020年8月27日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员