This paper presents a new approach to accurately track a moving vehicle with a multiview setup of red-green-blue depth (RGBD) cameras. We first propose a correction method to eliminate a shift, which occurs in depth sensors when they become worn. This issue could not be otherwise corrected with the ordinary calibration procedure. Next, we present a sensor-wise filtering system to correct for an unknown vehicle motion. A data fusion algorithm is then used to optimally merge the sensor-wise estimated trajectories. We implement most parts of our solution in the graphic processor. Hence, the whole system is able to operate at up to 25 frames per second with a configuration of five cameras. Test results show the accuracy we achieved and the robustness of our solution to overcome uncertainties in the measurements and the modelling.
翻译:本文介绍了一种新的方法,以准确跟踪具有红色绿色蓝色深度摄像头多视图装置的移动飞行器。 我们首先提出一种消除转换的纠正方法,这种转换在穿戴时在深层传感器中发生。 这个问题无法用普通校准程序加以纠正。 接下来, 我们提出了一个感应过滤系统, 用于校正未知的车辆动作。 然后, 数据聚合算法用于最佳地合并传感器- 智能估计轨迹。 我们在图形处理器中应用了我们大部分的解决方案。 因此, 整个系统能够以每秒25个框架以5个摄像头的配置运作。 测试结果显示我们所取得的准确性以及我们克服测量和建模中不确定性的解决方案的稳健性。