This paper presents a new approach to accurately track a moving vehicle with a multiview setup of red-green-blue depth (RGBD) cameras. We first propose a correction method to eliminate a shift, which occurs in depth sensors when they become worn. This issue could not be otherwise corrected with the ordinary calibration procedure. Next, we present a sensor-wise filtering system to correct for an unknown vehicle motion. A data fusion algorithm is then used to optimally merge the sensor-wise estimated trajectories. We implement most parts of our solution in the graphic processor. Hence, the whole system is able to operate at up to 25 frames per second with a configuration of five cameras. Test results show the accuracy we achieved and the robustness of our solution to overcome uncertainties in the measurements and the modelling.


翻译:本文介绍了一种新的方法,以准确跟踪具有红色绿色蓝色深度摄像头多视图装置的移动飞行器。 我们首先提出一种消除转换的纠正方法,这种转换在穿戴时在深层传感器中发生。 这个问题无法用普通校准程序加以纠正。 接下来, 我们提出了一个感应过滤系统, 用于校正未知的车辆动作。 然后, 数据聚合算法用于最佳地合并传感器- 智能估计轨迹。 我们在图形处理器中应用了我们大部分的解决方案。 因此, 整个系统能够以每秒25个框架以5个摄像头的配置运作。 测试结果显示我们所取得的准确性以及我们克服测量和建模中不确定性的解决方案的稳健性。

0
下载
关闭预览

相关内容

标跟踪是指:给出目标在跟踪视频第一帧中的初始状态(如位置,尺寸),自动估计目标物体在后续帧中的状态。 目标跟踪分为单目标跟踪和多目标跟踪。 人眼可以比较轻松的在一段时间内跟住某个特定目标。但是对机器而言,这一任务并不简单,尤其是跟踪过程中会出现目标发生剧烈形变、被其他目标遮挡或出现相似物体干扰等等各种复杂的情况。过去几十年以来,目标跟踪的研究取得了长足的发展,尤其是各种机器学习算法被引入以来,目标跟踪算法呈现百花齐放的态势。2013年以来,深度学习方法开始在目标跟踪领域展露头脚,并逐渐在性能上超越传统方法,取得巨大的突破。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
26+阅读 · 2021年7月11日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
专知会员服务
53+阅读 · 2020年3月16日
专知会员服务
86+阅读 · 2019年12月13日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
Arxiv
13+阅读 · 2021年10月22日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
3+阅读 · 2018年4月9日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
Top
微信扫码咨询专知VIP会员