As a powerful representation of 3D scenes, the neural radiance field (NeRF) enables high-quality novel view synthesis from multi-view images. Stylizing NeRF, however, remains challenging, especially on simulating a text-guided style with both the appearance and the geometry altered simultaneously. In this paper, we present NeRF-Art, a text-guided NeRF stylization approach that manipulates the style of a pre-trained NeRF model with a simple text prompt. Unlike previous approaches that either lack sufficient geometry deformations and texture details or require meshes to guide the stylization, our method can shift a 3D scene to the target style characterized by desired geometry and appearance variations without any mesh guidance. This is achieved by introducing a novel global-local contrastive learning strategy, combined with the directional constraint to simultaneously control both the trajectory and the strength of the target style. Moreover, we adopt a weight regularization method to effectively suppress cloudy artifacts and geometry noises which arise easily when the density field is transformed during geometry stylization. Through extensive experiments on various styles, we demonstrate that our method is effective and robust regarding both single-view stylization quality and cross-view consistency. The code and more results can be found in our project page: https://cassiepython.github.io/nerfart/.
翻译:作为 3D 场景的强大代表, 神经光亮场( NERF) 能够从多视图图像中进行高质量的新视角合成。 然而, 同步 NERF 仍然具有挑战性, 特别是在模拟文本制版风格时, 外观和几何同时修改。 在本文中, 我们展示了文本制版NERF- Art, 这是一种文本制版的NERF Stylization 方法, 以简单的文字来操控预先培训的 NERF 模式的风格。 与以往的方法不同, 要么缺乏足够的几何变形和纹理细节, 要么需要缩写来引导星体化。 我们的方法可以将3D场变为目标风格, 其特征是理想的几何和外观变化, 而没有任何网格指导。 我们通过引入新的全球本地对比学习策略, 加上同时控制轨迹和目标样式强度的定向限制。 此外, 我们采用了权重调整法化方法, 以有效抑制在几何线/ 键化过程中很容易产生的云。 通过在各种风格上进行广泛的实验, 我们的系统/ 测试, 我们的系统质量可以证明我们的方法是有效的。 。 在页面中, 我们的系统/ 双镜查看中, 我们的方法和图像中, 我们找到了有效的方法是有效的。