We consider a cell-free wireless system operated in Time Division Duplex (TDD) mode with user-centric clusters of remote radio units (RUs). Since the uplink pilot dimensions per channel coherence slot is limited, co-pilot users might incur mutual pilot contamination. In the current literature, it is assumed that the long-term statistical knowledge of all user channels is available. This enables MMSE channel estimation or simplified dominant subspace projection, which achieves significant pilot decontamination under certain assumptions on the channel covariance matrices. However, estimating the channel covariance matrix or even just its dominant subspace at all RUs forming a user cluster is not an easy task. In fact, if not properly designed, a piloting scheme for such long-term statistics estimation will also be subject to the contamination problem. In this paper, we propose a new channel subspace estimation scheme explicitly designed for cell-free wireless networks. Our scheme is based on 1) a sounding reference signal (SRS) using latin squares wideband frequency hopping, and 2) a subspace estimation method based on robust Principal Component Analysis (R-PCA). The SRS hopping scheme ensures that for any user and any RU participating in its cluster, only a few pilot measurements will contain strong co-pilot interference. These few heavily contaminated measurements are (implicitly) eliminated by R-PCA, which is designed to regularize the estimation and discount the "outlier" measurements. Our simulation results show that the proposed scheme achieves almost perfect subspace knowledge, which in turns yields system performance very close to that with ideal channel state information, thus essentially solving the problem of pilot contamination in cell-free user-centric TDD wireless networks.


翻译:我们认为,在时代司Duplex (TDD) 模式下运行的无细胞无线系统是用远程无线电单位(RUs)以用户为中心的组群运行的。由于每个频道一致性站点的上链试点范围有限,共同试点用户可能会受到相互试点污染。在目前的文献中,假设所有用户频道的长期统计知识都存在。这可以使MMSE频道的频道估计或简化主控子空间投影,在频道调频矩阵的某些假设下实现显著的试验性净化。然而,估计频道的常态矩阵,甚至仅仅仅仅在其构成用户群的所有路标联盟(R-PCA)的主要次空间子空间组组组群(次空间组)并不是一件容易的任务。事实上,如果没有适当设计,一个用于这种长期统计估算的试点计划也会受到污染问题的影响。在本文件中,我们提出的新的频道子空间估计计划基于1) 使用拉丁方方方频频频频频频频率选择的感应信号(SRSS) 和2) 一种基于稳健的首席构件分析(R-PCA) 的次空间估计方法。SRSBeving 计划基本上确保任何用户的用户和任何参与的升级的系统都能的精确测量测量计划,这些系统能的精确的精确的测量, 将使得任何用户和任何常规的精确的系统能的测量的测量系统能显示其精确的精确的精确度的精确度的测量度的测量度测量度的系统。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员