This paper develops a class of general alternating-direction implicit (GADI) iteration methods for solving time-dependent linear systems (TDLS), including linear differential systems and linear matrix systems. We present a GADI Kronecker product splitting (GADI-KP) method and prove the convergence with weak restrictions. The generalized Kronecker product splitting method and Kronecker product splitting method can be unified in the GADI-KP framework. Then, we use the framework to design an effective preconditioner of Krylov subspace methods for solving TDLS. The GADI-KP method is sensitive to the splitting parameters. Different from traditional theoretical estimate methods, we propose multitask kernel learning Gaussian process regression (GPR) method to predict the relative optimal splitting parameters. This method has solved the multi-parameter optimization in GADI framework and kernel selection in GPR method. Finally, we apply our approach to solve a two-dimensional diffusion equation, a two-dimensional convection-diffusion equation, and a differential Sylvester matrix equation. Numerical experiments illustrate that the GADI-KP framework and its preconditioning form have advantage over efficiency and superiority compared with the existing results.


翻译:本文为解决时间依赖线性系统(TDLS),包括线性差分系统和线性矩阵系统,制定了一类普通交向隐含迭代法(GADI),我们提出了一种GADI Kronecker产品分解方法(GADI-KP),并证明这种方法与薄弱的限制相融合。通用的Kronecker产品分解法和Kronecker产品分解法可以在GADI-KP框架内统一。然后,我们利用这个框架设计一个有效的Krylov 子空间方法的先决条件,以解决TDLS。GADI-KP方法对分解参数很敏感。与传统的理论估计方法不同,我们提出了多塔斯内尔学习高斯进程回归法(GPR),以预测相对最佳的分解参数。这个方法解决了GADI-KP框架中的多参数优化和GPR方法中的内核内核分离法。最后,我们运用了我们的方法来解决两维的传播方程、两维调-分解方方方方方程式和不同的Sylvester 矩阵方程式方程式等。Nual实验表明GAADI-KP框架具有现有优势和先验的优势。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
7+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月13日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
7+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员