This paper develops a class of general alternating-direction implicit (GADI) iteration methods for solving time-dependent linear systems (TDLS), including linear differential systems and linear matrix systems. We present a GADI Kronecker product splitting (GADI-KP) method and prove the convergence with weak restrictions. The generalized Kronecker product splitting method and Kronecker product splitting method can be unified in the GADI-KP framework. Then, we use the framework to design an effective preconditioner of Krylov subspace methods for solving TDLS. The GADI-KP method is sensitive to the splitting parameters. Different from traditional theoretical estimate methods, we propose multitask kernel learning Gaussian process regression (GPR) method to predict the relative optimal splitting parameters. This method has solved the multi-parameter optimization in GADI framework and kernel selection in GPR method. Finally, we apply our approach to solve a two-dimensional diffusion equation, a two-dimensional convection-diffusion equation, and a differential Sylvester matrix equation. Numerical experiments illustrate that the GADI-KP framework and its preconditioning form have advantage over efficiency and superiority compared with the existing results.
翻译:本文为解决时间依赖线性系统(TDLS),包括线性差分系统和线性矩阵系统,制定了一类普通交向隐含迭代法(GADI),我们提出了一种GADI Kronecker产品分解方法(GADI-KP),并证明这种方法与薄弱的限制相融合。通用的Kronecker产品分解法和Kronecker产品分解法可以在GADI-KP框架内统一。然后,我们利用这个框架设计一个有效的Krylov 子空间方法的先决条件,以解决TDLS。GADI-KP方法对分解参数很敏感。与传统的理论估计方法不同,我们提出了多塔斯内尔学习高斯进程回归法(GPR),以预测相对最佳的分解参数。这个方法解决了GADI-KP框架中的多参数优化和GPR方法中的内核内核分离法。最后,我们运用了我们的方法来解决两维的传播方程、两维调-分解方方方方方程式和不同的Sylvester 矩阵方程式方程式等。Nual实验表明GAADI-KP框架具有现有优势和先验的优势。