A new bivariate copula is proposed for modeling negative dependence between two random variables. We show that it complies with most of the popular notions of negative dependence reported in the literature and study some of its basic properties. Specifically, the Spearman's rho and the Kendall's tau for the proposed copula have a simple one-parameter form with negative values in the full range. Some important ordering properties comparing the strength of negative dependence with respect to the parameter involved are considered. Simple examples of the corresponding bivariate distributions with popular marginals are presented. Application of the proposed copula is illustrated using a real data set.
翻译:为模拟两个随机变数之间的负依赖性,提出了一个新的双变相交织物。我们表明,它符合文献中所报告的大多数流行的负依赖性概念,并研究了其中的一些基本特性。具体地说,Spearman的rho和Kendall对拟议相交合物的tau有简单的单数表,带有全范围的负值。一些与所涉参数的负依赖性强度比较的重要排序属性得到了考虑。提供了与流行边缘相对应的双变相分布的简单例子。用真实的数据集演示了拟议相交合物的应用。