A new bivariate copula is proposed for modeling negative dependence between two random variables. We show that it complies with most of the popular notions of negative dependence reported in the literature and study some of its basic properties. Specifically, the Spearman's rho and the Kendall's tau for the proposed copula have a simple one-parameter form with negative values in the full range. Some important ordering properties comparing the strength of negative dependence with respect to the parameter involved are considered. Simple examples of the corresponding bivariate distributions with popular marginals are presented. Application of the proposed copula is illustrated using a real data set.


翻译:为模拟两个随机变数之间的负依赖性,提出了一个新的双变相交织物。我们表明,它符合文献中所报告的大多数流行的负依赖性概念,并研究了其中的一些基本特性。具体地说,Spearman的rho和Kendall对拟议相交合物的tau有简单的单数表,带有全范围的负值。一些与所涉参数的负依赖性强度比较的重要排序属性得到了考虑。提供了与流行边缘相对应的双变相分布的简单例子。用真实的数据集演示了拟议相交合物的应用。

0
下载
关闭预览

相关内容

【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
11+阅读 · 2020年7月15日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月2日
Dynamic models using score copula innovations
Arxiv
0+阅读 · 2021年4月2日
Bivariate Beta LSTM
Arxiv
6+阅读 · 2019年10月7日
VIP会员
相关VIP内容
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
AAAI2020 图相关论文集
图与推荐
11+阅读 · 2020年7月15日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员