In-band Network Telemetry (INT) and sketching algorithms are two promising directions for measuring network traffics in real time. To combine sketch with INT and preserve their advantages, a representative approach is to use INT to send a switch sketch in small pieces (called sketchlets) to end-host for reconstructing an identical sketch. However, in this paper, we reveal that when naively selecting buckets to sketchlets, the end-host reconstructed sketch is inaccurate. To overcome this problem, we present DUNE, an innovative sketch-INT network measurement system. DUNE incorporates two key innovations: First, we design a novel scatter sketchlet that is more efficient in transferring measurement data by allowing a switch to select individual buckets to add to sketchlets; Second, we propose lightweight data structures for tracing "freshness" of the sketch buckets, and present algorithms for smartly selecting buckets that contain valuable measurement data to send to end-host. We theoretically prove the effectiveness of our proposed methods, and implement a prototype on commodity programmable switch. The results of extensive experiments driven by real-world traffics on DUNE suggest that our proposed system can substantially improve the measurement accuracy at a trivial cost.


翻译:宽带网络遥测(INT)和草图算法是实时测量网络流量的两个有希望的方向。为了与INT相结合并保持其优势,一种有代表性的方法是使用INT发送小块切换草图(称为草图),用于最终主机重建一个相同的草图。然而,在本文中,我们揭示,当天真地选择草图的桶时,终端主重建草图是不准确的。为了解决这一问题,我们提出了创新的草图-网测量系统DUNE。DUNE包含两个关键的创新:第一,我们设计了一个小的散射草图,通过允许切换单个桶添加到草图,更高效地传输测量数据;第二,我们提出了用于追踪草图桶“新鲜”的轻量数据结构,并提出了智能地选择含有有价值的测量数据送至终端主机的桶的算法。我们从理论上证明了我们所提议的方法的有效性,并实施了商品可编程转换原型。由DUNE实际世界交通驱动的广泛实验的结果表明,我们提议的系统可以大幅度改善成本的精确性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年2月8日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员