The classic paper of Shapley and Shubik \cite{Shapley1971assignment} characterized the core of the assignment game using ideas from matching theory and LP-duality theory and their highly non-trivial interplay. Whereas the core of the assignment game is always non-empty, that of the general graph matching game can be empty. This paper salvages the situation by giving an imputation in the $2/3$-approximate core for the latter. This bound is best possible, since it is the integrality gap of the natural underlying LP. Our profit allocation method goes further: the multiplier on the profit of an agent lies in the interval $[{2 \over 3}, 1]$, depending on how severely constrained the agent is. The core is a key solution concept in cooperative game theory. It contains all ways of distributing the total worth of a game among agents in such a way that no sub-coalition has incentive to secede from the grand coalition. Our imputation, in the $2/3$-approximate core, implies that a sub-coalition will gain at most a $3/2$ factor by seceding, and less in typical cases.
翻译:经典的Shapley 和 Shubik 和 Shubik 和 Shubik 和 Shapleit{Shapley1971traction} 的论文利用来自匹配理论和 LP-质量理论及其高度非三重性相互作用的理念来描述任务游戏的核心。 虽然任务游戏的核心总是非空的, 普通图形匹配游戏的核心却可能是空的。 本文通过在2/3美元接近核心中给后者一个估算值来挽救局面。 这个约束是最好的, 因为它是自然基底LP的整体性差距。 我们的利润分配方法更进一步: 一个代理的利润的乘数在于 $[[ { 2\ over 3}, 1], 取决于该代理的间隔。 核心是合作游戏理论中的一个关键解决方案概念。 它包含了在代理中分配游戏总价值的所有方法, 其分解方式是, 以至于任何子组合都没有动力从大联盟中分离出来。 我们在 3/3美元接近核心中, 意味着一个子联盟将获得最多3/2美元的分数, 在典型案例中, 递减。