The proliferation of diverse wireless services in 5G and beyond has led to the emergence of network slicing technologies. Among these, admission control plays a crucial role in achieving service-oriented optimization goals through the selective acceptance of service requests. Although deep reinforcement learning (DRL) forms the foundation in many admission control approaches thanks to its effectiveness and flexibility, initial instability with excessive convergence delay of DRL models hinders their deployment in real-world networks. We propose a digital twin (DT) accelerated DRL solution to address this issue. Specifically, we first formulate the admission decision-making process as a semi-Markov decision process, which is subsequently simplified into an equivalent discrete-time Markov decision process to facilitate the implementation of DRL methods. A neural network-based DT is established with a customized output layer for queuing systems, trained through supervised learning, and then employed to assist the training phase of the DRL model. Extensive simulations show that the DT-accelerated DRL improves resource utilization by over 40% compared to the directly trained state-of-the-art dueling deep Q-learning model. This improvement is achieved while preserving the model's capability to optimize the long-term rewards of the admission process.
翻译:暂无翻译