Flooding is one of the most disastrous natural hazards, responsible for substantial economic losses. A predictive model for flood-induced financial damages is useful for many applications such as climate change adaptation planning and insurance underwriting. This research assesses the predictive capability of regressors constructed on the National Flood Insurance Program (NFIP) dataset using neural networks (Conditional Generative Adversarial Networks), decision trees (Extreme Gradient Boosting), and kernel-based regressors (Gaussian Process). The assessment highlights the most informative predictors for regression. The distribution for claims amount inference is modeled with a Burr distribution permitting the introduction of a bias correction scheme and increasing the regressor's predictive capability. Aiming to study the interaction with physical variables, we incorporate Daymet rainfall estimation to NFIP as an additional predictor. A study on the coastal counties in the eight US South-West states resulted in an $R^2=0.807$. Further analysis of 11 counties with a significant number of claims in the NFIP dataset reveals that Extreme Gradient Boosting provides the best results, that bias correction significantly improves the similarity with the reference distribution, and that the rainfall predictor strengthens the regressor performance.
翻译:洪水是造成重大经济损失的最灾难性的自然危害之一。 洪水引起的资金损害的预测模型对于气候变化适应规划和保险承保等许多应用都有用。 这项研究评估了在国家洪水保险方案(NFIP)数据集中利用神经网络(有条件的产生反向网络)、决策树(Extreme Gradient Boringsting)和内核回归器(Gausian Process)建造的累退器的预测能力。 评估突显了最丰富的回归预测因素。 索赔数额的分布情况以Burr 分布为模型,允许引入偏差修正计划,提高递减器的预测能力。 为了研究与物理变量的相互作用,我们将日间降雨估计纳入NFIP作为补充预测。 对美国8个西州沿海各县进行的一项研究得出了2美元=0.807美元。 进一步分析了11个州,在NFIP数据集中提出了大量索赔。 索赔的分布显示,极端梯度的推算值显示,极端梯度的推后推力和推算提供了最佳的预测结果,从而大大改进了预测。