Principal component analysis (PCA) is a workhorse of modern data science. Practitioners typically perform PCA assuming the data conforms to Euclidean geometry. However, for specific data types, such as hierarchical data, other geometrical spaces may be more appropriate. We study PCA in space forms; that is, those with constant positive (spherical) and negative (hyperbolic) curvatures, in addition to zero-curvature (Euclidean) spaces. At any point on a Riemannian manifold, one can define a Riemannian affine subspace based on a set of tangent vectors and use invertible maps to project tangent vectors to the manifold and vice versa. Finding a low-dimensional Riemannian affine subspace for a set of points in a space form amounts to dimensionality reduction because, as we show, any such affine subspace is isometric to a space form of the same dimension and curvature. To find principal components, we seek a (Riemannian) affine subspace that best represents a set of manifold-valued data points with the minimum average cost of projecting data points onto the affine subspace. We propose specific cost functions that bring about two major benefits: (1) the affine subspace can be estimated by solving an eigenequation -- similar to that of Euclidean PCA, and (2) optimal affine subspaces of different dimensions form a nested set. These properties provide advances over existing methods which are mostly iterative algorithms with slow convergence and weaker theoretical guarantees. Specifically for hyperbolic PCA, the associated eigenequation operates in the Lorentzian space, endowed with an indefinite inner product; we thus establish a connection between Lorentzian and Euclidean eigenequations. We evaluate the proposed space form PCA on data sets simulated in spherical and hyperbolic spaces and show that it outperforms alternative methods in convergence speed or accuracy, often both.


翻译:首席元件分析( PCA) 是现代数据科学的工序 。 执业者通常使用 CPA, 假设数据符合 Euclide 的几何。 但是, 对于特定的数据类型, 如等级数据, 其他几何空间可能更为合适 。 我们用空间形式研究 CPA ; 也就是说, 具有恒定正( 球) 和负( 高偏差) 曲度的( 高偏差) 曲度。 在Riemann 的方程式中, 执业者通常会使用 Riemannian 偏心速度子空间; 使用不可逆的地图, 将正向矢量矢量矢量矢量的矢量矢量矢量矢量矢量矢量矢量的量矢量矢量矢量矢量递增。 任何这样的直线子空间都能够提供同一度和正度的空间形式和曲度。 要找到一个( Riemann ) 的次空间亚空间, 以正弦值直径的亚空间亚空间,, 以最优的直径直径的轨道保证, 将一个比值的极点显示一个最低的直线数据值的直线值数据, 。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
0+阅读 · 2023年3月3日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员