The movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. When information about mobility flows is not available for a particular region of interest, we must rely on mathematical models to generate them. In this work, we propose the Deep Gravity model, an effective method to generate flow probabilities that exploits many variables (e.g., land use, road network, transport, food, health facilities) extracted from voluntary geographic data, and uses deep neural networks to discover non-linear relationships between those variables and mobility flows. Our experiments, conducted on mobility flows in England, Italy, and New York State, show that Deep Gravity has good geographic generalization capability, achieving a significant increase in performance (especially in densely populated regions of interest) with respect to the classic gravity model and models that do not use deep neural networks or geographic data. We also show how flows generated by Deep Gravity may be explained in terms of the geographic features using explainable AI techniques.
翻译:城市内部和城市之间的个人流动影响着我们社会的关键方面,如福祉、流行病的传播和环境质量。当无法为某个感兴趣的地区提供有关流动流动的信息时,我们必须依靠数学模型来生成这些信息。在这项工作中,我们提出了深重模型,这是产生流动概率的有效方法,它利用了从自愿地理数据中提取的许多变量(如土地使用、公路网络、运输、粮食、卫生设施),并利用深神经网络来发现这些变量与流动流动流动之间的非线性关系。我们在英格兰、意大利和纽约州进行的关于流动流动流动的实验表明,深重力具有良好的地理通用能力,在不使用深神经网络或地理数据的传统重力模型和模型方面(特别是在人口稠密的感兴趣地区)取得了显著的提高。我们还用可解释的AI技术从地理特征的角度解释了深重力生成的流量。