3D point cloud segmentation is an important function that helps robots understand the layout of their surrounding environment and perform tasks such as grasping objects, avoiding obstacles, and finding landmarks. Current segmentation methods are mostly class-specific, many of which are tuned to work with specific object categories and may not be generalizable to different types of scenes. This research proposes a learnable region growing method for class-agnostic point cloud segmentation, specifically for the task of instance label prediction. The proposed method is able to segment any class of objects using a single deep neural network without any assumptions about their shapes and sizes. The deep neural network is trained to predict how to add or remove points from a point cloud region to morph it into incrementally more complete regions of an object instance. Segmentation results on the S3DIS and ScanNet datasets show that the proposed method outperforms competing methods by 1%-9% on 6 different evaluation metrics.
翻译:3D点云分解是一个重要功能, 帮助机器人了解周围环境的布局, 并完成抓取物体、 避免障碍、 寻找里程碑等任务。 当前分解方法大多是针对具体等级的, 其中很多方法与特定对象类别相关, 可能无法对不同类型的场景进行普及。 此研究提出了一种可学习的区域增长方法, 用于分类、 不可知点云分解, 特别是用于实例标签预测。 拟议方法能够使用单一的深神经网络来分割任何类型的物体, 而不对其形状和大小做出任何假设。 深神经网络受过培训, 以预测如何从点云区域增加或删除点点, 以将其转换成一个对象实例中越来越完整的区域。 S3DIS 和 ScanNet 数据集的分解分析结果显示, 拟议的方法在6种不同的评价指标上比相竞方法高出1%-9% 。