This paper introduces ArtELingo, a new benchmark and dataset, designed to encourage work on diversity across languages and cultures. Following ArtEmis, a collection of 80k artworks from WikiArt with 0.45M emotion labels and English-only captions, ArtELingo adds another 0.79M annotations in Arabic and Chinese, plus 4.8K in Spanish to evaluate "cultural-transfer" performance. More than 51K artworks have 5 annotations or more in 3 languages. This diversity makes it possible to study similarities and differences across languages and cultures. Further, we investigate captioning tasks, and find diversity improves the performance of baseline models. ArtELingo is publicly available at https://www.artelingo.org/ with standard splits and baseline models. We hope our work will help ease future research on multilinguality and culturally-aware AI.
翻译:本文介绍ArtELingo,这是一个新的基准和数据集,旨在鼓励不同语言和文化之间多样性方面的工作。在ArtEmis之后,WikiArt收集了80k件艺术作品,配有0.45M情感标签和只有英语字幕。ArtELingo又增加了阿拉伯文和中文的0.79M说明,加上西班牙文的4.8K,以评价“文化转移”的绩效。51K艺术作品有5个或更多语种的说明。这种多样性使得可以研究不同语言和文化之间的相似和差异。此外,我们调查字幕任务,发现多样性可以改善基线模型的性能。ArtELingo在https://www.artelengo.org/上公开提供标准分解和基线模型。我们希望我们的工作将有助于便利今后关于多语言和文化认知的AI的研究。