We investigate the task of missing value estimation in graphs as given by water distribution systems (WDS) based on sparse signals as a representative machine learning challenge in the domain of critical infrastructure. The underlying graphs have a comparably low node degree and high diameter, while information in the graph is globally relevant, hence graph neural networks face the challenge of long-term dependencies. We propose a specific architecture based on message passing which displays excellent results for a number of benchmark tasks in the WDS domain. Further, we investigate a multi-hop variation, which requires considerably less resources and opens an avenue towards big WDS graphs.
翻译:我们调查在分布水系统(WDS)给出的图表中缺少价值估算的任务,其依据是稀少的信号,作为关键基础设施领域具有代表性的机器学习挑战,基本图表具有相对较低的节点度和高直径,而图表中的信息具有全球相关性,因此,图形神经网络面临长期依赖性的挑战。我们建议基于信息传递的具体架构,该架构为WDS领域的一些基准任务展示出优异的结果。此外,我们调查多点差异,这需要大量的资源,并为获取大型WDS图表开辟一条途径。