Accurate polyp segmentation is of great significance for the diagnosis and treatment of colorectal cancer. However, it has always been very challenging due to the diverse shape and size of polyp. In recent years, state-of-the-art methods have achieved significant breakthroughs in this task with the help of deep convolutional neural networks. However, few algorithms explicitly consider the impact of the size and shape of the polyp and the complex spatial context on the segmentation performance, which results in the algorithms still being powerless for complex samples. In fact, segmentation of polyps of different sizes relies on different local and global contextual information for regional contrast reasoning. To tackle these issues, we propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM). Specifically, LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer. GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention. Our proposed approach is evaluated on the EndoScene and Kvasir-SEG Datasets, and shows outstanding performance compared with other state-of-the-art methods. The code is available at https://github.com/ReaFly/ACSNet.


翻译:精密的聚合分解对于诊断和治疗直肠癌非常重要,然而,由于聚苯乙烯的形状和大小各不相同,这种分解总是非常具有挑战性。近年来,在深层神经神经网络的帮助下,最先进的方法在这项任务中取得了重大突破。然而,很少有算法明确考虑到聚苯乙烯的大小和形状以及复杂的空间环境对分解性能的影响,这导致算法仍然无法用于复杂的样本。事实上,不同大小的聚虫的分解取决于不同的当地和全球背景信息,以进行区域对比推理。为了解决这些问题,我们建议采用基于编码-解码器的适应性环境选择框架,该框架由本地环境关注模块、全球背景模块和适应性选择模块组成。具体地说,LCEA模块提供本地环境特征,从电解码层到解码层,加强对由上层预测地图确定的硬区域的关注。GCM旨在进一步探索全球背景特征,并将SDEGS的解码-S-S-S-S-S-S-S-S-S-S-S-SDAR-S-SDAR-S-todaldal-dal-Supdalational-Supalational-Supal-Supal-Supation-slationalation-slation-slational-Smlation-Smal-Smal-s 和S-sdalviolviolviewdaldations-s-s-s-s-Stoviol-Stodal-s-Stodalviviviation-saldalvicolviviviviviation-slationsal 和S)。 和Smad-s-saldations-s-s-saldaldal-sal-saldal-sal-Supdaldaldaldal-Supdaldaldal-sal-saldaldaldaldal-Supdal-Smads-s-S和S和Smad-Stodaldaldaldal-S和Smadaldaldaldaldal_S和S和S和S和S和Stoal-Stoaldss

1
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员