This paper presents the comparison of various neural networks and algorithms based on accuracy, quickness, and consistency for antenna modelling. Using Nntool by MATLAB, 22 different combinations of networks and training algorithms are used to predict the dimensions of a rectangular microstrip antenna using dielectric constant, height of substrate, and frequency of operation as input. Comparison and characterization of networks is done based on accuracy, mean square error, and training time. Algorithms, on the other hand, are analyzed by their accuracy, speed, reliability, and smoothness in the training process. Finally, these results are analyzed, and recommendations are made for each neural network and algorithm based on uses, advantages, and disadvantages. For example, it is observed that Reduced Radial Bias network is the most accurate network and Scaled Conjugate Gradient is the most reliable algorithm for electromagnetic modelling. This paper will help a researcher find the optimum network and algorithm directly without doing time-taking experimentation.


翻译:本文件根据天线建模的精确度、快度和一致性对各种神经网络和算法进行了比较。 MATLAB使用Nntool,使用22种不同的网络和培训算法组合来预测矩形微细天线的尺寸,使用电离常数、基底温度的高度和作为输入的运行频率。网络的比较和定性是根据精确度、平均平方误差和培训时间进行的。另一方面,对算法进行了分析,用其精确度、速度、可靠性和训练过程的顺畅性来分析。最后,对这些结果进行了分析,并根据使用、优缺点对每个神经网络和算法提出了建议。例如,人们观察到,减少辐射比亚斯网络是最准确的网络,而缩放孔径梯梯是电磁建模最可靠的算法。本文将有助于研究人员在不进行时间实验的情况下直接找到最佳网络和算法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年10月31日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月12日
Compression of Deep Learning Models for Text: A Survey
Deep Comparison: Relation Columns for Few-Shot Learning
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员