Recommender Systems are inevitable to personalize user's experiences on the Internet. They are using different approaches to recommend the Top-K items to users according to their preferences. Nowadays recommender systems have become one of the most important parts of largescale data mining techniques. In this paper, we propose a Hybrid Movie Recommender System (HMRS) based on Resource Allocation to improve the accuracy of recommendation and solve the cold start problem for a new movie. HMRS-RA uses a self-organizing mapping neural network to clustering the users into N clusters. The users' preferences are different according to their age and gender, therefore HMRS-RA is a combination of a Content-Based Method for solving the cold start problem for a new movie and a Collaborative Filtering model besides the demographic information of users. The experimental results based on the MovieLens dataset show that the HMRS-RA increases the accuracy of recommendation compared to the state-of-art and similar works.
翻译:推荐人系统是将用户在互联网上的经验个人化的不可避免的。 他们正在使用不同的方法向用户推荐顶级K级项目。 如今,推荐人系统已成为大规模数据挖掘技术的最重要部分之一。 在本文中,我们提议基于资源配置的混合电影建议系统(HMRS ), 以提高建议准确性并解决新电影的冷开始问题。 HMRS-RA 使用一个自我组织的绘图神经网络将用户集中到N组中。 用户的偏好因其年龄和性别不同而不同, 因此 HMRS-RA 是一种基于内容的方法的组合, 用来解决新电影的冷开始问题, 除了用户的人口信息之外, 合作过滤模型。 以MiveLens 数据集为基础的实验结果显示, HMRS-RA 提高了建议的准确性, 与最新工艺和类似作品相比。