Omnidirectional 3D information is essential for a wide range of applications such as Virtual Reality, Autonomous Driving, Robotics, etc. In this paper, we propose a novel, model-agnostic, two-stage pipeline for omnidirectional monocular depth estimation. Our proposed framework PanoDepth takes one 360 image as input, produces one or more synthesized views in the first stage, and feeds the original image and the synthesized images into the subsequent stereo matching stage. In the second stage, we propose a differentiable Spherical Warping Layer to handle omnidirectional stereo geometry efficiently and effectively. By utilizing the explicit stereo-based geometric constraints in the stereo matching stage, PanoDepth can generate dense high-quality depth. We conducted extensive experiments and ablation studies to evaluate PanoDepth with both the full pipeline as well as the individual modules in each stage. Our results show that PanoDepth outperforms the state-of-the-art approaches by a large margin for 360 monocular depth estimation.
翻译:全方向三维信息对于诸如虚拟现实、自主驾驶、机器人等广泛应用至关重要。 在本文中, 我们提出一个新的、 模型- 不可知性、 两阶段管道, 用于全方向单视深度估计。 我们提议的 PanoDepeh 框架以360 张图像作为输入, 在第一阶段生成一个或更多综合观点, 并将原始图像和合成图像输入随后的立体匹配阶段。 在第二阶段, 我们提出一个可区分的球形旋转层, 以高效和高效地处理全方向立体立体几何学。 通过在立体匹配阶段使用明确的立体几何限制, PanoDepeh 能够产生密度高的深度。 我们进行了广泛的实验和升级研究, 以便用整个管道以及每个阶段的单个模块来评价 PanoDepeh 。 我们的结果表明, PanoDepeh 超越了以大宽距值进行360 单面深度估计的最先进方法。