Spiking neural networks (SNNs) have been widely used due to their strong biological interpretability and high energy efficiency. With the introduction of the backpropagation algorithm and surrogate gradient, the structure of spiking neural networks has become more complex, and the performance gap with artificial neural networks has gradually decreased. However, most SNN hardware implementations for field-programmable gate arrays (FPGAs) cannot meet arithmetic or memory efficiency requirements, which significantly restricts the development of SNNs. They do not delve into the arithmetic operations between the binary spikes and synaptic weights or assume unlimited on-chip RAM resources by using overly expensive devices on small tasks. To improve arithmetic efficiency, we analyze the neural dynamics of spiking neurons, generalize the SNN arithmetic operation to the multiplex-accumulate operation, and propose a high-performance implementation of such operation by utilizing the DSP48E2 hard block in Xilinx Ultrascale FPGAs. To improve memory efficiency, we design a memory system to enable efficient synaptic weights and membrane voltage memory access with reasonable on-chip RAM consumption. Combining the above two improvements, we propose an FPGA accelerator that can process spikes generated by the firing neuron on-the-fly (FireFly). FireFly is implemented on several FPGA edge devices with limited resources but still guarantees a peak performance of 5.53TSOP/s at 300MHz. As a lightweight accelerator, FireFly achieves the highest computational density efficiency compared with existing research using large FPGA devices.


翻译:Spik神经网络(SNN)由于其强大的生物可解释性和高能效而被广泛使用。随着采用后伸伸缩算法和代位梯度,神经网络的结构变得更加复杂,人造神经网络的性能差距逐渐缩小。然而,大多数SNN硬件用于外地可编程门阵列(FPGAs)无法满足算术或记忆效率的要求,这大大限制了SNNS的发展。它们不会进入二进制钉和合成重量之间的算术操作,或者通过使用过于昂贵的小型任务装置承担无限的机头内神经记录仪资源。为了提高算术效率,我们分析了神经网络的神经网络神经动态,将SNNN计算操作与多重加速器的累积操作进行总体化,并提议通过使用XilinxUlleral的DSP48E2硬块来高性能地执行这种操作。为了提高记忆效率,我们设计一个内存系统,使精密的同步重量超过5.FSO值的神经设备,并且以高压的机尾部智能智能智能智能智能智能系统进行一个合理的读取过程。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
28+阅读 · 2021年9月18日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员