Precision agriculture is rapidly attracting research to efficiently introduce automation and robotics solutions to support agricultural activities. Robotic navigation in vineyards and orchards offers competitive advantages in autonomously monitoring and easily accessing crops for harvesting, spraying and performing time-consuming necessary tasks. Nowadays, autonomous navigation algorithms exploit expensive sensors which also require heavy computational cost for data processing. Nonetheless, vineyard rows represent a challenging outdoor scenario where GPS and Visual Odometry techniques often struggle to provide reliable positioning information. In this work, we combine Edge AI with Deep Reinforcement Learning to propose a cutting-edge lightweight solution to tackle the problem of autonomous vineyard navigation without exploiting precise localization data and overcoming task-tailored algorithms with a flexible learning-based approach. We train an end-to-end sensorimotor agent which directly maps noisy depth images and position-agnostic robot state information to velocity commands and guides the robot to the end of a row, continuously adjusting its heading for a collision-free central trajectory. Our extensive experimentation in realistic simulated vineyards demonstrates the effectiveness of our solution and the generalization capabilities of our agent.
翻译:精密农业正在迅速吸引研究,以有效引进自动化和机器人解决方案,支持农业活动; 葡萄园和果园的机器人导航具有竞争优势,可以自主监测并方便地获取作物,以便收获、喷洒和进行耗费时间的必要任务; 如今,自主导航算法利用昂贵的传感器,这也需要大量计算数据处理费用; 然而,葡萄园是一个具有挑战性的户外景象,全球定位系统和视觉测量技术常常在提供可靠的定位信息方面挣扎; 在这项工作中,我们将Edge AI与深层强化学习结合起来,提出一种尖端轻量级解决方案,以解决自主葡萄园导航的问题,而不利用精确的本地化数据,以灵活的学习方法克服任务定制的算法; 我们培训一个端到端感官剂,直接绘制噪音深度图像和定位的机器人状态信息,用于速度指令,引导机器人到一排的末端,不断调整其航向,以达到无碰撞的中心轨道。 我们在现实模拟葡萄园进行的广泛实验,显示了我们解决方案的有效性和代理人的通用能力。