Neural networks for image classification tasks assume that any given image during inference belongs to one of the training classes. This closed-set assumption is challenged in real-world applications where models may encounter inputs of unknown classes. Open-set recognition aims to solve this problem by rejecting unknown classes while classifying known classes correctly. In this paper, we propose to utilize gradient-based representations obtained from a known classifier to train an unknown detector with instances of known classes only. Gradients correspond to the amount of model updates required to properly represent a given sample, which we exploit to understand the model's capability to characterize inputs with its learned features. Our approach can be utilized with any classifier trained in a supervised manner on known classes without the need to model the distribution of unknown samples explicitly. We show that our gradient-based approach outperforms state-of-the-art methods by up to 11.6% in open-set classification.
翻译:用于图像分类任务的神经网络假定, 推断过程中的任何特定图像都属于某类培训课程。 这种封闭式假设在现实世界应用中受到挑战, 模型可能遇到未知类的投入。 开放式承认的目的是通过拒绝未知类, 正确分类已知类来解决这个问题。 在本文中, 我们提议使用从已知分类器获得的基于梯度的表示法来训练仅包含已知类的未知检测器。 渐变与适当代表特定样本所需的更新模型数量相对应, 我们利用这些模型来理解模型用其所学特征描述投入的能力。 我们的方法可以在已知类中以监督方式训练的任何分类师使用,而不需要对未知样本的分布进行明确的模型。 我们显示, 我们基于梯度的方法在开放式分类中比最新工艺方法高出11.6%。