The fixed parameter tractable (FPT) approach is a powerful tool in tackling computationally hard problems. In this paper, we link FPT results to classic artificial intelligence (AI) techniques to show how they complement each other. Specifically, we consider the workflow satisfiability problem (WSP) which asks whether there exists an assignment of authorised users to the steps in a workflow specification, subject to certain constraints on the assignment. It was shown by Cohen et al. (JAIR 2014) that WSP restricted to the class of user-independent constraints (UI), covering many practical cases, admits FPT algorithms, i.e. can be solved in time exponential only in the number of steps $k$ and polynomial in the number of users $n$. Since usually $k << n$ in WSP, such FPT algorithms are of great practical interest. We present a new interpretation of the FPT nature of the WSP with UI constraints giving a decomposition of the problem into two levels. Exploiting this two-level split, we develop a new FPT algorithm that is by many orders of magnitude faster than the previous state-of-the-art WSP algorithm and also has only polynomial-space complexity. We also introduce new pseudo-Boolean (PB) and Constraint Satisfaction (CSP) formulations of the WSP with UI constraints which efficiently exploit this new decomposition of the problem and raise the novel issue of how to use general-purpose solvers to tackle FPT problems in a fashion that meets FPT efficiency expectations. In our computational study, we investigate, for the first time, the phase transition (PT) properties of the WSP, under a model for generation of random instances. We show how PT studies can be extended, in a novel fashion, to support empirical evaluation of scaling of FPT algorithms.


翻译:固定参数可拉动( FPT) 方法是处理计算难题的有力工具。 在本文中, 我们将 FPT 的结果与经典人工智能(AI) 技术联系起来, 以显示它们是如何互补的。 具体地说, 我们考虑工作流程可对比性问题( WSP ), 询问是否有授权用户被分配到工作流程规格中的步骤, 受任务的某些限制。 Cohen 等人( JAIR 2014 ) 显示, WSP 仅限于用户独立限制的类别, 涵盖许多实际案例, 接受 FPT 算法, 也就是说, 只能以时间指数速度加速的方式解决 FPT, 我们开发了一个新的FPT 算法, 也只是以数量级的速度解决了 $k$ 美元 和 用户数量 。 由于WSP 通常使用 $k n$, 这种FPT 算法的算法具有极大的实际兴趣。 我们对WPT 的FPT 质 质化 质化 质化 质化 提供了一个新的解释性解释性, 。 我们的FPTFPT 质化, 我们用新的 的精确化 数据化 和 系统化 系统化 数据化 系统化 系统化, 也向新的系统化 展示了 的 的 系统化 系统化 系统化 系统化 的精化, 系统化 系统化 系统化 的精确化, 我们化 的精确化 系统化 系统化 系统化 系统化 系统化 系统化 系统化 系统化 系统化 系统化 系统化 的精确性化, 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 和 的 的 系统化 的 的 的 的 的 的 和 的 的 的 的 的 的 的 和 和 的 和 和 的 系统化化 的 和 系统化 的 的 的

0
下载
关闭预览

相关内容

FPT:International Conference on Field-Programmable Technology。 Explanation:现场可编程技术国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/fpt/
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员