The comprehension of how local interactions arise in global collective behavior is of utmost importance in both biological and physical research. Traditional agent-based models often rely on static rules that fail to capture the dynamic strategies of the biological world. Reinforcement learning has been proposed as a solution, but most previous methods adopt handcrafted reward functions that implicitly or explicitly encourage the emergence of swarming behaviors. In this study, we propose a minimal predator-prey coevolution framework based on mixed cooperative-competitive multiagent reinforcement learning, and adopt a reward function that is solely based on the fundamental survival pressure, that is, prey receive a reward of $-1$ if caught by predators while predators receive a reward of $+1$. Surprisingly, our analysis of this approach reveals an unexpectedly rich diversity of emergent behaviors for both prey and predators, including flocking and swirling behaviors for prey, as well as dispersion tactics, confusion, and marginal predation phenomena for predators. Overall, our study provides novel insights into the collective behavior of organisms and highlights the potential applications in swarm robotics.
翻译:暂无翻译