Recent advances in artificial intelligence and machine learning may soon yield paradigm-shifting benefits for aerospace systems. However, complexity and possible continued on-line learning makes neural network control systems (NNCS) difficult or impossible to certify under the United States Military Airworthiness Certification Criteria defined in MIL-HDBK-516C. Run time assurance (RTA) is a control system architecture designed to maintain safety properties regardless of whether a primary control system is fully verifiable. This work examines how to satisfy compliance with MIL-HDBK-516C while using active set invariance filtering (ASIF), an advanced form of RTA not envisaged by the 516c committee. ASIF filters the commands from a primary controller, passing on safe commands while optimally modifying unsafe commands to ensure safety with minimal deviation from the desired control action. This work examines leveraging the core theory behind ASIF as assurance argument explaining novel satisfaction of 516C compliance criteria. The result demonstrates how to support compliance of novel technologies with 516C as well as elaborate how such standards might be updated for emerging technologies.


翻译:最近人工智能和机器学习的进步已经为航天系统带来了可能产生变革性益处的突破性进展。然而,由于复杂性和可能的连续在线学习,神经网络控制系统(NNCS)很难或不可能在MIL-HDBK-516C定义的美国空军适航性认证标准下获得认证。运行时保证(RTA)是一种控制系统架构,旨在在主控制系统无法完全验证的情况下维护安全性质。本文研究了如何满足MIL-HDBK-516C的合规性要求,并使用主动集不变量滤波器(ASIF),这是516c委员会未曾设想过的先进形式的RTA。ASIF过滤来自主控制器的指令,传递安全指令,同时通过最优修改不安全指令来确保安全,以尽可能减小与期望控制动作的差异。本文研究了利用ASIF的核心理论作为保证论据,解释了516C合规性标准的新型满足方法。结果展示了如何支持新技术的516C合规性,以及如何为新兴技术更新这样的标准。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月17日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员