Recent feature contrastive learning (FCL) has shown promising performance in unsupervised representation learning. For the close-set representation learning where labeled data and unlabeled data belong to the same semantic space, however, FCL cannot show overwhelming gains due to not involving the class semantics during optimization. Consequently, the produced features do not guarantee to be easily classified by the class weights learned from labeled data although they are information-rich. To tackle this issue, we propose a novel probability contrastive learning (PCL) in this paper, which not only produces rich features but also enforces them to be distributed around the class prototypes. Specifically, we propose to use the output probabilities after softmax to perform contrastive learning instead of the extracted features in FCL. Evidently, such a way can exploit the class semantics during optimization. Moreover, we propose to remove the $\ell_{2}$ normalization in the traditional FCL and directly use the $\ell_{1}$-normalized probability for contrastive learning. Our proposed PCL is simple and effective. We conduct extensive experiments on three close-set image classification tasks, i.e., unsupervised domain adaptation, semi-supervised learning, and semi-supervised domain adaptation. The results on multiple datasets demonstrate that our PCL can consistently get considerable gains and achieves the state-of-the-art performance for all three tasks.


翻译:最近的特征对比学习( FCL) 显示在未监督的演示学习中表现良好。 但是,对于贴标签数据和未贴标签数据属于同一语义空间的近置代表学习,FCL由于在优化过程中没有涉及类语义学,无法显示巨大的收益。 因此, 生成的特征不能保证很容易地按照从标签数据中学习的类权重进行分类, 尽管它们信息丰富。 为了解决这个问题, 我们提议在本文中采用一个新的概率对比学习( PCL) 概率( PCL), 它不仅产生丰富的功能, 而且还强制在类原型中进行分布。 具体地说, 我们提议在软体格后使用产出概率来进行对比学习而不是FCL的提取特征。 显然, 这样的方法可以在优化过程中利用类语系的语义结构。 此外, 我们提议取消传统FCLL( $ell) 的常规值标准, 直接使用 $\ *$=1}( PCL) 常规的概率。 我们提议的PCL( PCL) 是简单而有效的。 我们提议在三种近地域域域里进行广泛的实验, 学习多变现。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
41+阅读 · 2020年12月1日
近期必读的七篇NeurIPS 2020【对比学习】相关论文和代码
专知会员服务
65+阅读 · 2020年10月20日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
77+阅读 · 2020年6月11日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年10月2日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
41+阅读 · 2020年12月1日
近期必读的七篇NeurIPS 2020【对比学习】相关论文和代码
专知会员服务
65+阅读 · 2020年10月20日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
77+阅读 · 2020年6月11日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员