Emotion classification in NLP assigns emotions to texts, such as sentences or paragraphs. With texts like "I felt guilty when he cried", focusing on the sentence level disregards the standpoint of each participant in the situation: the writer ("I") and the other entity ("he") could in fact have different affective states. The emotions of different entities have been considered only partially in emotion semantic role labeling, a task that relates semantic roles to emotion cue words. Proposing a related task, we narrow the focus on the experiencers of events, and assign an emotion (if any holds) to each of them. To this end, we represent each emotion both categorically and with appraisal variables, as a psychological access to explaining why a person develops a particular emotion. On an event description corpus, our experiencer-aware models of emotions and appraisals outperform the experiencer-agnostic baselines, showing that disregarding event participants is an oversimplification for the emotion detection task.
翻译:在 NLP 中, 情感分类将情感分配到文本中, 比如句子或段落。 文本如“ 当他哭泣时我感到内疚 ”, 侧重于句级, 忽略了每个参与者的观点: 作家( “ I ) 和其他实体( “ 他 ” ) 事实上可能有不同的情感状态。 不同实体的情感只在情感语义作用标签中被部分地考虑过, 这项任务将语义作用与情感提示词联系起来。 提出相关任务, 我们缩小对事件体验者的注意力, 并给每个事件指派一种情感( 如果有的话) 。 为此, 我们代表每一种情感, 以及评估变量, 作为解释一个人发展某种情绪的原因的心理途径。 在事件描述堆中, 我们的情感体验和评估模式超越了经验- 认知基线, 表明无视事件参与者是情感检测任务的过度简单化 。