Although data-driven motion mapping methods are promising to allow intuitive robot control and teleoperation that generate human-like robot movement, they normally require tedious pair-wise training for each specific human and robot pair. This paper proposes a transferability-based mapping scheme to allow new robot and human input systems to leverage the mapping of existing trained pairs to form a mapping transfer chain, which will reduce the number of new pair-specific mappings that need to be generated. The first part of the mapping schematic is the development of a Synergy Mapping via Dual-Autoencoder (SyDa) method. This method uses the latent features from two autoencoders to extract the common synergy of the two agents. Secondly, a transferability metric is created that approximates how well the mapping between a pair of agents will perform compared to another pair before creating the motion mapping models. Thus, it can guide the formation of an optimal mapping chain for the new human-robot pair. Experiments with human subjects and a Pepper robot demonstrated 1) The SyDa method improves the accuracy and generalizability of the pair mappings, 2) the SyDa method allows for bidirectional mapping that does not prioritize the direction of mapping motion, and 3) the transferability metric measures how compatible two agents are for accurate teleoperation. The combination of the SyDa method and transferability metric creates generalizable and accurate mapping need to create the transfer mapping chain.
翻译:虽然数据驱动的移动绘图方法很有希望,可以允许直观的机器人控制和远程操作,从而产生像人类的机器人运动,但这种方法通常需要为每个特定的人类和机器人配对者提供乏味的配对培训。本文件提出一个基于可转让性的绘图方案,允许新的机器人和人类输入系统利用现有的训练有素的对配的绘图,形成一个绘图传输链,这将减少需要生成的新的配对专用地图的数量。测绘图的第一部分是通过双自动电解器(SyDa)开发一个同步绘图方法。这种方法使用两个自动编码器的潜在特征来获取两个代理人的共同协同作用。第二,创建了一个可转让性指标,使一对代理人之间的绘图与另一对配对的绘图相匹配,从而减少需要生成新的人-机器人配对所需的新配对专用的新的配对专用制图系统数量。与人类实验和辣椒机器人演示了1)SyD方法改进了配对制图的准确性和可概括性。2 SyD方法使得可兼容性制图方法的精确性和可变性性转移成为双向的移动性模型。