Various methods can obtain certified estimates for roots of polynomials. Many applications in science and engineering additionally utilize the value of functions evaluated at roots. For example, critical values are obtained by evaluating an objective function at critical points. For analytic evaluation functions, Newton's method naturally applies to yield certified estimates. These estimates no longer apply, however, for H\"older continuous functions, which are a generalization of Lipschitz continuous functions where continuous derivatives need not exist. This work develops and analyzes an alternative approach for certified estimates of evaluating locally H\"older continuous functions at roots of polynomials. An implementation of the method in Maple demonstrates efficacy and efficiency.
翻译:多种方法可以获取多面体根的经认证的估计数。许多科学和工程应用还利用了从根源上评估的功能的价值。例如,通过在临界点评估一个客观功能获得了关键值。对于分析性评估功能,牛顿的方法自然地适用于产生经认证的估计数。然而,这些估计数不再适用于H\"老的连续功能,这些功能是Lipschitz连续功能的概括,在不需要连续衍生物的地方,这些功能是Lipschitz连续功能的概括。这项工作开发并分析了一种经认证的对当地多面体根部的H\"老的连续功能进行评估的替代方法。在Maple中采用的方法显示了效率和效益。