Hypernymy plays a fundamental role in many AI tasks like taxonomy learning, ontology learning, etc. This has motivated the development of many automatic identification methods for extracting this relation, most of which rely on word distribution. We present a novel model HyperBox to learn box embeddings for hypernym discovery. Given an input term, HyperBox retrieves its suitable hypernym from a target corpus. For this task, we use the dataset published for SemEval 2018 Shared Task on Hypernym Discovery. We compare the performance of our model on two specific domains of knowledge: medical and music. Experimentally, we show that our model outperforms existing methods on the majority of the evaluation metrics. Moreover, our model generalize well over unseen hypernymy pairs using only a small set of training data.
翻译:Hypernymy在许多AI任务中扮演着根本性的角色,例如分类学学习、肿瘤学学习等等。 这促使我们开发了多种自动识别方法来提取这种关系,其中多数依靠文字分布。 我们展示了一个新颖的超音波模型来学习超音波发现时的嵌入盒。 根据一个输入术语, HyperBox从目标体中提取了合适的超音频。 对于这项任务, 我们使用为 SemEval 2018 共同任务出版的关于超音速发现的数据集。 我们比较了我们模型在两个特定知识领域的表现: 医学和音乐。 实验中, 我们显示我们的模型在大多数评价指标上都比现有方法要强。 此外, 我们的模型只使用少量的培训数据, 大大超越了看不见的超音频配对。