Deep kernel processes (DKPs) generalise Bayesian neural networks, but do not require us to represent either features or weights. Instead, at each hidden layer they represent and optimize a flexible kernel. Here, we develop a Newton-like method for DKPs that converges in around 10 steps, exploiting matrix solvers initially developed in the control theory literature. These are many times faster the usual gradient descent approach. We generalise to arbitrary DKP architectures, by developing "kernel backprop", and algorithms for "kernel autodiff". While these methods currently are not Bayesian as they give point estimates and scale poorly as they are cubic in the number of datapoints, we hope they will form the basis of a new class of much more efficient approaches to optimizing deep nonlinear function approximators.


翻译:深海内核进程( DKPs) 一般化 Bayesian 神经网络( DKPs), 但不要求我们代表特性或重量。 相反, 在每一个隐藏层中, 它们代表并优化一个灵活的内核。 在这里, 我们为 DKP 开发了一个类似 牛顿 的方法, 共 约 10 个步骤, 利用最初在控制理论文献中开发的矩阵解析器。 这些是通常的梯度下降方法的多倍。 我们通过开发“ 内核反向” 和“ 内核自动反向” 算法, 来概括任意的 DKP 结构。 虽然这些方法目前不是 Bayesian, 因为它们给出点估计值和比例差, 因为它们在数据点数中是立立立的, 我们希望它们会形成一个新的更高效方法级基础, 优化深海非线性功能近似。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月18日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员