Sampling and Variational Inference (VI) are two large families of methods for approximate inference with complementary strengths. Sampling methods excel at approximating arbitrary probability distributions, but can be inefficient. VI methods are efficient, but can fail when probability distributions are complex. Here, we develop a framework for constructing intermediate algorithms that balance the strengths of both sampling and VI. Both approximate a probability distribution using a mixture of simple component distributions: in sampling, each component is a delta-function and is chosen stochastically, while in standard VI a single component is chosen to minimize divergence. We show that sampling and VI emerge as special cases of an optimization problem over a mixing distribution, and intermediate approximations arise by varying a single parameter. We then derive closed-form sampling dynamics over variational parameters that stochastically build a mixture. Finally, we discuss how to select the optimal compromise between sampling and VI given a computational budget. This work is a first step towards a highly flexible yet simple family of inference methods that combines the complementary strengths of sampling and VI.
翻译:抽样和变化推论(VI)是两个大系列的近似推算方法,具有互补优势。抽样方法在近似任意概率分布方面十分出色,但可能效率低。 VI方法效率高,但在概率分布复杂时可能失败。 在这里,我们开发了一个框架,用于构建中间算法,平衡抽样和六的长处。 两种方法都使用简单成分分布的混合法来估计概率分布:在取样中,每个组成部分都是三角函数,是随机选择的,在标准六中选择一个单一组成部分以尽量减少差异。我们显示,取样和六是混合分布中出现优化问题的特例,中间近似则由不同的单一参数产生。我们随后对混合体构建的变异参数得出封闭式抽样动态。最后,我们讨论如何根据计算预算在取样和六之间选择最佳妥协。这项工作是朝着高度灵活和简单的方法组合的第一步,将抽样和六的优点结合起来。