As the essential technical support for Metaverse, Mobile Augmented Reality (MAR) has attracted the attention of many researchers. MAR applications rely on real-time processing of visual and audio data, and thus those heavy workloads can quickly drain the battery of a mobile device. To address such problem, edge-based solutions have appeared for handling some tasks that require more computing power. However, such strategies introduce a new trade-off: reducing the network latency and overall energy consumption requires limiting the size of the data sent to the edge server, which, in turn, results in lower accuracy. In this paper, we design an edge-based MAR system and propose a mathematical model to describe it and analyze the trade-off between latency, accuracy, server resources allocation and energy consumption. Furthermore, an algorithm named LEAO is proposed to solve this problem. We evaluate the performance of the LEAO and other related algorithms across various simulation scenarios. The results demonstrate the superiority of the LEAO algorithm. Finally, our work provides insight into optimization problem in edge-based MAR system for Metaverse.
翻译:暂无翻译