Owing to the merits of early safety and reliability guarantee, autonomous driving virtual testing has recently gains increasing attention compared with closed-loop testing in real scenarios. Although the availability and quality of autonomous driving datasets and toolsets are the premise to diagnose the autonomous driving system bottlenecks and improve the system performance, due to the diversity and privacy of the datasets and toolsets, collecting and featuring the perspective and quality of them become not only time-consuming but also increasingly challenging. This paper first proposes a Systematic Literature Review (SLR) approach for autonomous driving tests, then presents an overview of existing publicly available datasets and toolsets from 2000 to 2020. Quantitative findings with the scenarios concerned, perspectives and trend inferences and suggestions with 35 automated driving test tool sets and 70 test data sets are also presented. To the best of our knowledge, we are the first to perform such recent empirical survey on both the datasets and toolsets using a SLA based survey approach. Our multifaceted analyses and new findings not only reveal insights that we believe are useful for system designers, practitioners and users, but also can promote more researches on a systematic survey analysis in autonomous driving surveys on dataset and toolsets.
翻译:由于早期安全和可靠性保障的优点,自主驾驶虚拟测试最近与实际情况下的闭路测试相比越来越受到越来越多的关注。虽然自主驾驶数据集和工具的可用性和质量是诊断自主驾驶系统瓶颈和改善系统性能的前提,但由于数据集和工具的多样性和隐私性,收集和展示其视角和质量不仅耗时,而且越来越具有挑战性。本文件首先建议对自主驾驶测试采用系统文学审查(SLR)方法,然后概述2000年至2020年现有的公开数据集和工具。还介绍了与相关假设有关的定量结果、观点和趋势推断以及35套自动驾驶测试工具和70套测试数据集的建议。我们最了解的是,我们首先利用基于服务级协议的调查方法对数据集和工具进行这种最近的实证调查。我们多方面的分析和新发现不仅揭示了我们认为对系统设计者、从业人员和用户有用的见解,而且还能够促进在对数据集和工具的自主驾驶调查中进行更多的系统调查分析。