Probabilistic proofs of the Johnson-Lindenstrauss lemma imply that random projection can reduce the dimension of a data set and approximately preserve pairwise distances. If a distance being approximately preserved is called a success, and the complement of this event is called a failure, then such a random projection likely results in no failures. Assuming a Gaussian random projection, the lemma is proved by showing that the no-failure probability is positive using a combination of Bonferroni's inequality and Markov's inequality. This paper modifies this proof in two ways to obtain a greater lower bound on the no-failure probability. First, Bonferroni's inequality is applied to pairs of failures instead of individual failures. Second, since a pair of projection errors has a bivariate gamma distribution, the probability of a pair of successes is bounded using an inequality from Jensen (1969). If $n$ is the number of points to be embedded and $\mu$ is the probability of a success, then this leads to an increase in the lower bound on the no-failure probability of $\frac{1}{2}\binom{n}{2}(1-\mu)^2$ if $\binom{n}{2}$ is even and $\frac{1}{2}\left(\binom{n}{2}-1\right)(1-\mu)^2$ if $\binom{n}{2}$ is odd. For example, if $n=10^5$ points are to be embedded in $k=10^4$ dimensions with a tolerance of $\epsilon=0.1$, then the improvement in the lower bound is on the order of $10^{-14}$. We also show that further improvement is possible if the inequality in Jensen (1969) extends to three successes, though we do not have a proof of this result.
翻译:暂无翻译