Accurate lane detection under various road conditions is a critical function for autonomous driving. Generally, when detected lane lines from a front camera image are projected into a birds-eye view (BEV) for motion planning, the resulting lane lines are often distorted. And convolutional neural network (CNN)-based feature extractors often lose resolution when increasing the receptive field to detect global features such as lane lines. However, Lidar point cloud has little image distortion in the BEV-projection. Since lane lines are thin and stretch over entire BEV image while occupying only a small portion, lane lines should be detected as a global feature with high resolution. In this paper, we propose Lane Mixer Network (LMN) that extracts local features from Lidar point cloud, recognizes global features, and detects lane lines using a BEV encoder, a Mixer-based global feature extractor, and a detection head, respectively. In addition, we provide a world-first large urban lane dataset for Lidar, K-Lane, which has maximum 6 lanes under various urban road conditions. We demonstrate that the proposed LMN achieves the state-of-the-art performance, an F1 score of 91.67%, with K-Lane. The K-Lane, LMN training code, pre-trained models, and total dataset development platform are available at github.


翻译:不同道路条件下的准确航道探测是自主驾驶的关键功能。 一般来说,当从前摄像头图像中检测到的航道线被投射到用于运动规划的鸟眼视图(BEV)时,由此产生的航道线常常被扭曲。 以神经神经网络(CNN)为基础的地貌提取器在增加接收场以探测全球地貌(如车道线)时往往会失去分辨率。 但是,利达尔点云在BEV预测中几乎没有图像扭曲。 由于航道线薄,宽于整个BEV图像,而只占一小部分,因此应当将航道线作为高分辨率的全球特征被探测出来。 在本文中,我们提议 Lane Mixer 网络(LMN) 从利达尔点云中提取本地特征,承认全球特征,并使用BEV 编码、以混合器为基础的全球地貌提取器以及探测头。 此外,我们为LD-L-Lane 提供了世界上第一个大型城市航道数据集,在各种道路条件下最多有6个航道。 我们证明,拟议的LMNMN- Laxx- trade- train Frevades 和Ltal- trade- trade- trade- sal- preal- sal- dade- sal deal- sal- sal- dealmental- sal- sal- ex- ex- ex- saldaldaldaldaldaldaldaldaldaldald.

0
下载
关闭预览

相关内容

专知会员服务
69+阅读 · 2021年1月16日
专知会员服务
60+阅读 · 2020年3月19日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019 | Stereo R-CNN 3D 目标检测
极市平台
27+阅读 · 2019年3月10日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员