Fast and accurate MRI image reconstruction from undersampled data is crucial in clinical practice. Deep learning based reconstruction methods have shown promising advances in recent years. However, recovering fine details from undersampled data is still challenging. In this paper, we introduce a novel deep learning based method, Pyramid Convolutional RNN (PC-RNN), to reconstruct images from multiple scales. Based on the formulation of MRI reconstruction as an inverse problem, we design the PC-RNN model with three convolutional RNN (ConvRNN) modules to iteratively learn the features in multiple scales. Each ConvRNN module reconstructs images at different scales and the reconstructed images are combined by a final CNN module in a pyramid fashion. The multi-scale ConvRNN modules learn a coarse-to-fine image reconstruction. Unlike other common reconstruction methods for parallel imaging, PC-RNN does not employ coil sensitive maps for multi-coil data and directly model the multiple coils as multi-channel inputs. The coil compression technique is applied to standardize data with various coil numbers, leading to more efficient training. We evaluate our model on the fastMRI knee and brain datasets and the results show that the proposed model outperforms other methods and can recover more details. The proposed method is one of the winner solutions in the 2019 fastMRI competition.
翻译:在临床实践中,从未充分抽样的数据中快速和准确的MRI图像重建至关重要。 深层学习基础重建方法显示近年来取得了有希望的进展。 但是,从未充分抽样的数据中恢复细细细节仍具有挑战性。 在本文中,我们引入了一种全新的深层次学习基础方法,即Pyramid Convolucial RNN (PC-RNNN),以从多个尺度重建图像。基于MRI重建的提法,作为反向问题,我们设计了PC-RNNN模型,并有三个Convolualal RNN(ConRNNN)模块,以迭代学习多个尺度的特征。每个ConvRNNN模块在不同尺度上重建图像,再版图像由最后的CNNM模块以金字型方式组合在一起。 多尺度的CONRNNNM模块与平行成像的其他常见的重建方法不同,PC-RNNN没有使用对多层数据敏感的地图,而是将多层圈(CNNNNNNN)模块作为多级输入的模型。 coil压缩技术用于将数据标准化数据与各种 Coil19 数字标准化,,导致更高效的模型。我们提议的快速模型中的一种恢复方法。 我们在快速模型中可以评估其他的模型,在快速模型中显示一个快速模型。